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ABSTRACT

The presence of soot on the fuel side of a diffusion flame results in significant radiative

heat losses. The influence of a fuel side heat loss zone on a pure diffusion flame established

between a fuel and an oxidizer wall is investigated by assuming a hypothetical sech" heat loss

profile. The intensity and width of the loss zone are parametrically varied. The loss zone is

placed at different distances from the Burke-Schumann flame location. The migration of the

temperature and reactivity peaks are examined for a variety of situations. For certain cases the

reaction zone breaks through the loss zone and relocates itself on the fuel side of the loss zone.

In all cases the temperature and reactivity peaks move toward the fuel side with increased heat

losses. The flame structure reveals that the primm"y balance for the energy equation is between

the reaction term and the diffusion term. Extinction plots are generated for a variety of

situations. The he.at transfer from the flame to the walls and the radiative fraction is also

investigated, and an analytical correlation formula, derived in a previous study, is shown to

produce excellent predictions of our numerical results when an O(i) numerical multiplicative

constant is employed.



1. h-NTRODUCTION

The interactionbetweenthestructureof a diffusion flame(DF) and theflame radiation

is quitecomplex. Soot is formedandoxidizedin adiffusionflameasaconsequenceofa va.dety

of physicalandchemicalprocesses.Thereareconsiderableuncertaintiesin thedescriptionof

soot processesin a flame and the sootevolution mechanismsare not completelyunderstood.

Hence,thesolutionof thecomplexproblemof diffusionflame- sootradiationinteractionis very

involved. The energy,speciesandsootvolumefractionequationsareall coupledand contain

nonlinearsourceterms. In the presentwork we investigatedthe influence of a simpleand

contrivedheatlossprofile on a purediffusion flameestablishedbetweentwo diffusing wz!Isof

fuel andoxidizer.

The influenceof heat transferby radiationon flameshas receivedsignificantattention

in recentyears [1-7]. Thermal radiation from a flamecanoccur from (1) radiation from the

combustiongasesat high temperatureand(2) radiationfrom combustiongeneratedparticulates,

i.e., soot. According to the calculationsof Grosshandlerand Modak [8] for soot volume

fractionsgreaterthan10.7sootradiationisdominant. A reviewof purediffusionflameswithout

heat lossesis presentedfirst. In the following sectionswe define the problem geometry,

describethe particular form of theheatlossprofile used,formulatetheconservationequations,
o.

briefly indicate the numerical method used and discuss the results.

In an ordinary diffusion flame the characteristic flow time is much greater than the

characteristic chemical reaction time. This implies that the chemical reaction is much faster than

the transport of species to the flame unless the flame is near or approaching the extinction stage.

A pure diffusion flame is established when both oxidizer and fuel are transported to the flame



by means of diffusion only. No convective flow is present. Some imcorta_t characteristics of

pure diffusion flames have been discussed in [9], including an analysis of the detailed nature of

the temperature and reaction rate profiles. It was observeA that the maximum of the ruction

rate profile usually will not coincide with the temperature profile maxim. The only exception

is the symmetric flame for which the overall stoichiometric coefficient, qb(=v 7rJ7oo) , equals

unity. This study shows, for a fuel-rich flame, that Z/sZr_Z, i.e., the peak of the react.ion

rate profile (Z,.) lies between the Burke-Schumann flame location (Zz.) and the peak of the

temperature profile (Z) for fuel rich conditions. For oxidizer-rich conditions, Z_ZrsZ r

It may be argued that in thin-flame limit all diffusion flames are "pure" diffusion flames because

the mixture fraction transformation discussed in Williams, chap. 3 [10], produces an equation

resembling Tz:z=lVZl-2 ,, where is the magnitude of the mixture fraction gradient

perpendicular to the flame. However, [V'Z] depends strongly on the heat and fluid flow

conditions and in effect introduces a new parameter that must be accounted for in a complete

analysis. Hence, though the value of [_V'Z/I (i.e., IV-Z[ evaluat_ at the flame sheet) may

be buried into a suitably redefined Damk6hler number, it must of course be resurrected when

later conducting a full examination of the problem.

Our goal in this work is to describe the response of a diffusion flame, when there is a

zone of radiant soot-generated energy losses nearby, through the examination of a simplified

model. A previously-generated theoretical correlation will be tested, and we shall, in addition,

attempt to produce practical correlations of the total heat flux from the flame, the total

(conductive plus radiative) energy flux to the surface, the drop in flame temperature due to

radiant loss, etc. We shall not develop the full correlations here, but we indicate their dominant
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behaviors. The complete correlationsrequire numericalexaminationof all possiblecases,

somethingwhich wasbeyond thescopeof this study.

2. THE MODEL

Figure I schematically depicts the problem geometry. The fuel wall and the oxidizer

wall are located at x=0 and x=L, respectively. Both walls issue diffusive fluxes of the

respective constituents. A diffusion flame is established between the two walls. A soot layer

is assumed to exist on the fuel-side of the DF, consistent with experimental observations [ll].

The walls have the ambient temperature T o . There is no fuel on the oxidizer wall and no

oxidizer on the fuel wall, the only possible other species at the walls being an inert element.

The fuel and oxidizer mass fractions at the respective walls are specified to have values Y_ and

Yoo as shown in Figure 1.

The combustion reaction is assumed to be a global, one-step chemical reaction of the

form F+vO-(l+v)P, where F denotes the fuel and O denotes the oxidizer. Methane is

nominally the fuel under consideration and oxygen is the oxidizing specie, although real

methane-oxygen reactions require of the order of I00 reaction steps and individual property

choices for the separate species. The stoichiometric fuel-oxidizer mass ratio, v, is four for the
_o

methane-oxygen combustion reaction. A suitable set of parameter values must be used to

generate a reasonable range of Damk6hler number and flame temperature values. The adiabatic

flame temperature is given by ri=L÷QrY_J[C(l÷4_)],

unit mass of fuel from the combustion reaction and C
p

The global stoichiometric coefficient, denoted by

where QF is the heat release per

is the specific heat of the mixture.

qb, is given by VYFJYoo. However, the
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useof the aboveformulaproducesunrealisticallyhigh adiabaticflametemperatures.Thus, the

aboveequationfor T f was modified to produce a practical and reasonable range of adiabatic

flame temperatures.

A set of realistic hydrocarbon combustion flame temperatures was obtained from the

work of Wichman [12] for the analysis of flame spread over thermoplastics. The idea there was

that the fuel mass fraction cannot reasonably be determined at the surface but a more-or-less

generic flame temperature can still be calculated. This flame temperature varies only with the

free-stream oxidizer mass fraction Yoo" The value of YrF, i.e., the fuel mass fraction in

the hypothetical fuel stream for our present calculations was assumed to be 0.85. The oxidizer

mass fractions (Yoo) and the flame temperatures (T/) are tabulated in Tabte 1.

A fourth order polynomial was fitted to the above data to obtain

' +25 a60.02 Yoo-9323.0 Yaoo (1)TI=486.66 + 12230.85 Yoo-25728.64 Y_o " 3

Using this expression, we generate points for a (Yoo, T/) plot.

We calculate Qr by using the relation Qr=(T/-T,,)Cv(1 "_)/YFt" for T/=2137K,

Yoo=0.211, Y,.F=0.85 and To=298K. The calculated valueof Qr is 11959.43 k.I/kgK.

We now introduce a modified formula for the calculation of the flame temperature,

QFY,r./ll"oo)
T;=r+ (2)

Cv(1+qb)

Next we calculate the values of the modification factor, f(YocO, by using the above expression.

The calculated value of Qr and the (Yoo, T/) data obtained using equation (1) were utilized

for this purpose. The _Yoc0 data were as follows,



/= 1.25exp( -2.99 Yoo) +0.33 (3)

Finally, we use the above expression for ./'(Yoo) to calculate T! for any set of Yoo and I"_F

values in equation (2). A plot of 7", versus Yoo is shown in Figure 2. The YFr values

corresponding to the different curves in the plot range from 0.25 to 1.0. The lowest cut-ve is

for YFr=0.25. The curves above are for YFF=0.30, 0.35, 0.40, etc. We note that for

YFe=0.25 and 0.30 the pea& flame temperature does not occur at Yoo=l; there is a slight

local maximum in the range 0<Yoo<l. For this reason we shall not use these curves.

However, for higher values of life we do obtain temperature profiles whose maxima occur

at Yoo=l. These profiles will be used. Also, we note that since we are interested in the effect

of soot radiation on diffusion flames, we are not concerned with low values of YFF which do

not produce significant amounts of soot. Hence, in our analysis, YF_: values of 0.30 and

lower are not used with reasonable physical justification.

The parameter values in the work of Tzeng et al. [13] were used in this article. The

important values are shown in Table 2.

Here we write the equations and boundary conditions for conservation of energy and

species. The energy conservation equation is

-- dq_

pcy,+.Ll L). + ---Z-, (4)

with boundary conditions T(x=0)=TO and T(x=L)=TO, where TO is the temperature at the

fuel and oxidizer walls, assumed to be 298 K. Here Tis the temperature, p is the density, C
P

is the specific heat of the mixture, _. is the thermal conductivity and u is the velocity. The
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volumetric radiativeheat loss term is -dq_/dx with units W/m 3. The heat release due to

combustion is Q=. and _. is the reaction rate term. An Arrhenius type expression was

assumed for the one-step irreversible reaction, so the reaction rate is (oF=PAYoY/_.xp-E/RT.

The quantity A denotes the pre-exponential factor. The thermal conductivity is ,l. The

oxidizer mass fraction equation is

O [Yo,+UYo] =(PDoYo):,-v_F, (5)

with boundaryconditions Yo(x=O)=O and Yo(X=L)=Yoo . Here, D o is the mass diffusivity

of the oxidizer. Similarly the fuel mass fraction equation is

P[YF,+UYF ]:(PD,,:YF )z-(o p (6)

with boundary conditions YF(x=0)=Z.,F and YF(x=L)=O; D e. is the mass diffusivity of the

fuel.

The above equations are now transformed to a mass coordinate system. The transformed

coordinate is Z=l-s/s o, where s=f0"=pd.x and So=foLPd.x. We note that Z= 1 when x-=0

and Z=0 when x-- i. The coordinate Z happens to be identical to the mixture fraction coordinate

for our simple problem. The following expressions hold for the above transformation:

I, [ So .. _((PU)°So ,+ z
(7)

and

a I =__.p aSo- , (8)

Since we are considering a pure diffusion flame, (pu):.o=(PU):.,=0 , i.e., there are no



convective flows from the walls. Application of these operators to the energy and species

equations and assuming p)., p'-Do, p2D F are constant, assuming the Lewis number is

unity and Do=D F and then introducing the nondimensionaJ variables

yo=ydyoo, )=s/(p o.L) gives

1

S o

(9)

i

Yo;=-_2Yo=-doDr, (! 0)
S o

1
yF;=-Z-_,yr=-Dr, (1 1)

S o

where So=SJ(PoL)=fot-pcEi where P=P/P0 and _=x/L. Also, r is the nondimensional

reaction rate and Ne is a radiation number [14] evaluated as the ratio of the reference

radiative and conductive fluxes, given by Ne=q,c.,,/()_o(T/-T,,)/L). The thermal conductivity

at the reference condition is denoted by .1.0. The quantity D is the Damk6hler number given

by t,Jtc_,,, where the reference diffusion time is trd=L2/c_ o and the characteristic chemical

time is tc_,=l/[AYooexp(-E/RT/) ]. The nondimensional quantity q'_ is given by qRIqp+,,_

where q_,! is a reference radiative heat flux. The nondimensional heat release, (_p is
oO

given by QrYrJ[Cp(TI-T,,)] and equals (l+do) since the adiabatic flame temperature is

defined as T/=T+QFYFJ[Cp(1 +dO)]. We note that in the prefactor multiplying the reaction term

of equation (9) we do not utilize the temperature correction discussed previously. In addition,

we have defined -[=t/tf The nondimensional reaction term, r, is written in the form

r=yoY_xp[-_(1-'O/(i-c_(1-'¢))], where ,,=l-To]T / and [3=Ecq(R T/); Eistheactivafion
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energyand R, is the universal gas constant. The quantity 13 is knov,'n as the Zeldovich

number.

2.1 Infinite Reaction Rate (IRR) Solutions as Initial Conditions

Equations (9)-(11) are the governing conservation equations for "¢, Yo and y,,. for

the case of finite rate chemistry. The equations become much simpler when the reaction rate

is infinite. In this case, all fuel reaching the flame surface is consumed ins_.ntaneously, and

similarly for the oxidizer. Thus no fuel exists on the oxidizer side and no oxidizer exists on

the fuel side, i.e., yoyF=0 on both sides of the flame. The energy equation can now be
m

solved in two adjacent domains, the oxidizer side (O<Z_Z/) and the fuel side (Z/_Z_l) of

the flame. The flame location is designated by Zr For our simple problem 'the mass

coordinate Z coincides with the mixture fraction, a conserved scalar: this is a rare special case.

In the absence of radiative losses the steady state energy equation becomes ":77=0. Since, at

the flame _=i, the solution of the steady state energy equation (":zz=0, since N_=0 and

the reaction term can be excluded) for the infinite reaction rate (IRR) situation gives x =Z/Z�

for O:;Z_Z/ and "c=(I-Z)/(I-Z/) for Z/_Z_I. Similarly, Yo and ye can besolved

for the infinite reaction rate situation and we get yo=(l-Z)-(l-Z/)_ for O_Z_Z/ and

y_=Z-Z/¢ for Z/<Z_;1.

Next, we must evaluate Z r the coordinate location of the IRR flame. As mentioned,

Zisthemixturefracdoncx_rdinate, defi.nedas Z=(_yr+ l-Yo.)l(d_+ l). Attheflame, Yo and Yt_

are both zero so that Z/=l/(qb+l). With "knowledge of Zr the nondimensional temperature

and species equations can all be determine exactly. The profiles so obtained are used as initial

profiles for the numerical solution of the transient conservation equations (9)-(1 1).
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2.2 Simple Heat Loss Profile

As shownin WichmanandRay[14] thesimplestmodelheatlossprofile is the "top-hat"

profile usedtherein. Becauseof thediscontinuousderivativesat theedgesof thetop-hatprofile,

it is notasconvenientfor numericalreasonsasa smoothandcontinuousheatlossprofile. For

primarily this reason,the profile that we shall usehere is of the form of a sech: in mixture

fraction space, viz.,

dqR

--- =seek -(B(Z-ZR)). (12)
dZ

The location where the maximum of -dqJdZ occurs is denoted by Z_. Figure 3 illustrates

the nature of variation of the heat loss profile in mixture fraction space. We note that the

maximum value of the profile is unity. We define the Z locations where the value of the

function is 1% of its peak value as the two tails of the function, located respectively at locations

we presently call Ze_ and Ze., with Zx_<Zx.. The maximum of the -dq_dZ profile

occurs at Zx=(Zx.+ZR.)/2. The width of the loss zone is defined to be ,_Zx--ZR.-ZR_. The

separation distance of the loss zone form the location of the ideal Burke-Schumann flame Z/

is given by zX=Z__-Z,. In the subsequent analysis, we shall vary the thick.hess lXZ_ as well
o.

as the separation distance 4, in order to study the influence of the loss zone on the flame

structure. The thickness of the loss zone can be chosen by selecting different values of the

parameter B in equation (12).

From equation (9) we note that the radiative loss term is given by (N_'so)dq,_ldZ, and

hence, another important way to modify the loss term is to experiment with the value of its
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amplitude, NRF o.

quantity S'o, given by sJ(poL)

evaluated at each time step.

We can choose different values of N K, the radiation number. The

is a by-product of the solution and for this reason is

We recall that for the top-hat profile the integrated heat loss is

foI(NJso)(U(ZR_)-U(ZR.))dZ=NJso_XZ,. In this case the integrated heat loss is given by

sotfo_Nx, sech2[B(Z-ZR)]dZ=NJ(Bso)tanhB(1-Za)+tankBZa]. For large B this simplifies to

2NJ_JB+O(B-Z), showing that the top-hat loss zone thickness .6Z R corresponds to 2/B,

or B=2/AZ a. Consequently, in analytical formulae for the top-hat profile (see ref. [14]) we

can substitute for _Z a the value 2/B in order to test their correspondence to the seck z profile.

3. NUMER.ICA L SOLUTION

Equations (9), (10) and (1 I) were numerically solved with a the finite difference scheme.

The nonlinear source terms were linearized using Newton's method. For each time step,

iterations were used until the sum of normalized residuals became smaller than lxl0 4. The

transient conservation equations ',*,'ere integrated to steady state.

We utilize the ideal gas law to derive a relation between the temperature and density of

the system. We can write pV=(m/ff/)RT where p is the density and R is the gas constant for

°°

the mixture, given by R=RJff". If we assume

system, then the introduction of a=l-To/T / and

important relation:

PoRTo to be the constant pressure of the

v=(T-T,,)/(T/-To.) results in the following

_= 1-c_
1 -c_(1 -v)" (13)
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We observe that when the temperature is that of the ambient, i.e.,

and p=l, i.e., P=Po"

p=l-_ and consequently

T=To=298K, then v=0

At the flame temperature (T/) the nondimensional density is

p =(1 - cz)po.

Equations (9)-(11) indicate that in order to solve the v, Yo and y, equations, we

need to evaluate _o at every time step. The quantity

coordinate transformation Z=l-a/s o.

4, since

and

s'0 enters the analysis by virtue of the

By differentiating both sides of this relation, we obtain

_=x/L. Using the transformation relation between Z

x', subject to the above mentioned boundary conditions, we get

and the relation between the

Jo- 1 , (t4)

fo'idZ
P

_ and Z coordinates can be written as

> f (,5)

f0;(l/_)az

On obtaining the solutions for ¢, Yo

back to the physical coordinate .7.

known. The normalized density

(13). Hence, the expression for

and y,.., equation (15) is used to transform the solutions

Thus, s0 can be evaluated once the p distribution is

.°

can be related to the -_ distribution by virtue of equation

_'0 can alternatively be written as

_0- 1 (t6)

fo'_ +(_/(t-.)) fo'¢dZ
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Hence, on obtaining the ¢ profile we can determine the quantity s o. When the temperature

throughout the domain is the same as the ambient temperature To., then -c=0 everywhere;

by using equation (16), we obtain _o=1. If we next assume that the temperature everywhere

in the domain is the adiabatic flame temperature Tr

minimum and maximum values of temperature are

s0 must obey the limits (l-c0<_o_l.

then _=1 and _o=(I-o:). Since the

T and T/ respectively, the quantity

4. RF__.SLrLTS ANI) DISCUSSION

Figure 4 depicts the nondimensional temperature, "_, plotted as a function of the

mixture fraction coordinate, Z, for different values of the radiation number, N_ for the

particular parameter values shown in the title of the figure. The oxidizer and fuel mass fractions

at the respective walls are Yoo=0.6 and YFr=0.8. In our subse.quent analysis we keep the

same set of oxidizer and fuel mass fractions, and vary the location, width and intensity of the

radiative loss zone. The above set of (Yoo, YFr) represents a typical case and is employed

extensively in the following analysis: the qualitative trends for other Yoo and Y_.,. values

are similar. The thickness of the radiative loss zone is 0.04 for all values of Ne and the

separation distance of the loss zone from the stoichiometric flame location is zero. We observe

that the flame temperature profile is uniformly lowered as the value of N_ increases. Also,

the flame temperature peak moves toward the fuel wall as the value of N_ is increased. The

drop in flame temperature, as well as the shift of the peak, become more prominent for higher

values of N._. For a value of Ne greater than 383, we do not obtain a steady state

temperature profile, indicating the occurrence of a radiative extinction. This maximum, or upper
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bound, for N a is then defined as N,_._a,,,_, i.e., Nz.,_,._:,_.:_,.=383 for this case. We also

note from Figure 4 that there is a change of slope of the temperature profile in the radiative loss

zone for higher values of N_ i.e., between

Figure 5 shows the nondimensional

Z.__ and ZR.

reaction rate term ((l *d?)Dr) for the same

values. Thesituation. We observe that the reaction rate profile collapses for increasing N R

reaction rate peak also moves towards the fuel side; this movement becomes more conspicuous

for higher values of N R. We notice that the reaction rate profile has managed to move nearly

beyond the rightmost side of the radiation loss zone (indicated by the dashed Lines at Z.__ and Za.)

for the highest value of N R.

We now focus on the temperature and species profiles for the situation when Na=383

for the above case, i.e., at the brink of extinction. Figure 6 also shows the temperature and

species profiles for the same flame for an infinite reaction rate. ',,Ve notice that when Na=383 ,

the slope of the Yo profile is quite different from its IRR counterpart. On the other hand, the

slope of the y,. profile follows the IRR ye profile closely until a Z-value of about 0.3, ,.,,'hen

its s!ope starts d_reasing. This plot therefore demonstrates explicitly the contrast between the

IRR situation and the finite chemistry situation with appreciable radiative losses. The migration

of the peaks of temperature and reactivity profiles is striking. Also, an abrupt change of the

temperature profile seems to take place in the zone of radiative losses, i.e., be_'_n Z__ and Za.

We add for emphasis that from the strictly physical viewpoint, the finite-rate solution has

attained a rather extreme form, since the reaction zone has almost completely propagated through

the loss zone. In Figure 6, we see that the loss zone is now on the oxidizer side of the reaction

rate profile. As we shall see, extreme cases like this are not the norm. They are also physically
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unrealistic, thoughmathematicallypermissiblein our simplified mode[with a prescribedhe.at

lossfunction.

We illustrate the details of the flame structure in Figure 7, where we plot the

contributionsof the different termsin theenergyequationwhen thesteadystateconditionhas

beenachieved. The loss term is given by (Nfso)sech2(B(Z-ZR)) and thediffusion term,as

in equation(9), is (1/s02)_z:z.We havealreadynoted from Figure 5 that for NR=383 the

reaction rate profile has penetrated through the radiative loss zone. Figure 7 indicates that the

diffusion term recovers the radiative losses almost entirely and the reaction term doesn't

contribute to the diffusion term in such a recovery process. This represents a completely

different physical problem, when the radiative loss term exists on the oxidizer side of the

primary reaction zone (flame). This result is, as already mentioned, clearly in conflict with our

hypothesis that the heat losses take place on the fuel side of the Name due to flame-generated

particulates. This occurs because our hypothetical radiative loss profile is simply a prescribed

function in Z, and as such, it does not contain any mechanisms for loss-zone movement as the

temperature and species profiles change, as a real soot zone invariably must.

In order to observe the effect of a thicker loss zone, we now increase _AZR to a value

of 0.1, see Fig. 8. We notice that the drop in the temperature profile is more significant in this

case and the flame extinguishes at a lower value of the radiation number, viz., for N_=132.

We use this opportunity to note that (NR_Ze),_ is approximately 14.2 for the first case and

13.2 for the second case. As shown in Wichman and Ray [14] for the simple top-hat loss

profile, it appears the extinction results are best correlated with the function Ne&Z R, although

the proper method of evaluating AZ R is not as straightforward as our estimate suggests. The
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correct methodof evaluating AZ_ is discussed later in the article.

Next, we consider the situa(ion when the left-most side of the loss zone is sufficiently

removed from Z/. for a flame with Yoo=0.6 and YrF--0.8. The thickness of the loss zone

is _ZR=0.06 and the separation distance, &, is 0.1 in this case. Figure 9 shows that the

flame temperature decreases with increasing N_. Here, the movement of the .ce..ak

nondimensional flame temperature is not pronounced, though it does move toward the fuel side.

Correspondingly, Figure l0 shows the variation of the reaction term, (1 +qb)Dr, for increasing

values of Np.. As mentioned for the preceding cases, therefore, the reaction zone does not

always propagate through the loss zone. A sufficient separation and magnitude of the Loss term

appear sufficient to block the through-transit.

We note that the reaction rate peN< is always to the left of the temperature peak, i.e.,

Z.,..<Z <Z. This is in accordance with the results obtained for pure diffusion flames without

radiative loses [9], as discussed before.

Figure 11 is an extinction plot for the case when _Ze=0.06 and ._4=0. Extinction

values of Ne are plotted as a function of Z.,, the theoretical flame location in the mixture

fraction coordinate. We notice that for a given value of the oxidizer mass fraction at the wall,

(N._)_,.,,ao,. , increases as Z¢. is decreased. A decrease in Z! implies an increase in qb,
oo

which, for a given Yoo, produces an increase in YFr AS Yr," increases, the reaction rate

becomes more vigorous and it becomes more difficult to extinguish the flame through radiative

losses. This explains the nature of the curves that we obtain on the extinction plot. Also, for

the same value of Z,, i.e., for the same value of _, a lower value of Yoo indicates a

correspondingly smaller value of YFr, and hence, the reaction rate also becomes smaller in
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magnitude. It is theneasierto extinguishthe flame. This explainswhy thecu_'esin Figure I1

all shift toward the left for decreasingvaluesof Yoo"

Our focus is next shifted to some quantities of practical interest. VCe evaluate the heat

transfer to the wall from flames with the same stoichiometry (Yoo=0.6 and Yrr=0.8) but

with different thicknesses of the radiative loss zones and for different separation distances A

from Zr Let Q_'.o denote the heat transferred to the oxidizer wall by the flame per unit

surface area of the wall. We reckon that the oxidizer wall will have a stronger effect on the

flame than the fuel wall owing to the proximity of the flame to the oxidizer wall. The flame

transfers heat to the oxidizer wall by means of both conduction and radiation, and hence,

Qa..o=Q_,.o.,o_.e+Qu.o._r, where the conduction flux is Qu.O.,o,_=-%(dT/dx)[_.L and the

radiative flux is Qu.o.,,_=O.5xfoL(d.qJd.r.)dx. We assume that half of the radiative losses travel

to each wall" this assumption is reasonable in the thermally-thin limit we consider here. \Ve

can transform the expressions for Q_.o.,o,,a and Qr¢.o.,_

by the reference conductive flux _.o(TI-To)/L.

Q_,o=(ll-_o)dvldZ)l..o +O.5×(1/Jc)Naf o'(ll_O(d_jd'z)dz. The quantity

to the Z cc_rdinate and normalize Qa'.o

The normalized

Q_.o.7o is plotted in

Figure 12. It is apparent that the heat transfer characteristics do not depend strongly on the

separation distance A, and consequently, we see four reasonably distinct groups of curves
.

corresponding to loss zones of four different thicknesses.

the separation distance A does become important

However, as is evident from the plot,

for higher values of Nm close to

extinction. We will notice that, nearing extinction, the flame attempts to reduce the heat losses

to the wall as much as possible. Also, the value of N a required for extinction is higher when

the heat loss zone is very thin, as intuitively obvious.
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We also plotted

shows that the quantity

1 2

fo Nxsech [B(Z-ZR)]dZ,

(_w.c_0 as a function of the quantity Na(2/B ). Figure 13 clearly

Na(2/B), which is approximately the value of the integral

is able to collapse the wall heat transfer data except very near

extinction. Thus, when plotted against N,(2/B), Qw.o.7o does not reveal any appreciable

dependence on either the separation distance A or even the thickness of the loss zone AZ R-

The correlation in the straight-line region is given approximately by Qr<oJo-I.9(NR(2/B)).-,-5.3,

which is reasonably accurate until the curves make their final turn toward the abscissa.

Another quantity of practical interest is the radiative fraction :(, given by the ratio

q_/qro,-r The quantity qa._ is the integral of the radiative loss term, i.e.,

fo_N_sech=[B(Z-Za )]dg qro_2 integrated the reaction rate in mixtureand is the value of

space, i.e., fol(l+?p)DrdZ. From Figure 14 we notice that qro_ decreases withfraction

increasing values of N_. This happens because with increased intensity of the radiative loss

zone, reaction rate values decrease as already observed in Figures 5 and I0. For thicker loss

zones, the drop in qro_ with increasing values of N,. is more rapid.

We have already noted in section 2.2 that the integral of the radiative loss term profile

is approximately (NJso)(2/B). Hence, it is of interest to plot the total heat release qro=, as

a function of the quantity N_(2/B). The result is shown in the Figure 15. Figure 15 indicates

that the quantity Na(2/B ) characterizes the total heat release rate very well and the curves for

different loss zone thicknesses virtually collapse on one another except for large values of N,_

close to extinction. The correlation in the linear region is given by qro,_, =- 15.25Na(2/B). 168.

The constants in this formula depend on the global stoichiometry.

Figure 16 illustrates the variation of ;t as a function of N a for different thicknesses
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of the loss zones and for A=0.

flame with a given loss zone thickness.

and, since correspondingly the qro_

quantities, increases. In order to produce a given value of X, a higher value of

required for a flame with a thinner loss zone. Similar to the study of qro,_,, we plot

We observe that X increases with increasing N_ for a

The integrated quantity q ._.:,._ increases with N'x

values decrease, X, which is a ratio of the above

Nx is

X as

a function of NR(2/B) in Figure 17. It is clear from the figure that the use of NR(2/B)

collapses the data very well except close to extinction. Here, the correlation in the linear

segment is x=O.O38NR(2/B); once again, the multiplicative constant must be a function of

global stoichiometry. Figure 18 shows the variation of the drop in tlame peak temperature,

..,.A_/, as a function of the radiative fraction 7_. Ifwe denote the maximum temperature by -_/,

then AT/ is defined as 1-_:.r We recall that the temperature has been normalized in such

a way that the peak nondimensional temperature for the infinite reaction rate situation always

has the value of unity, regardless of the oxidizer and fuel mass fractions. Thus, .6.v/

represents the drop in peak temperature for finite rate chemistry and radiative loss situation, in

comparison to theIRR situation. The increase in Az/ with X was almost linear for smaller

values of X, with A-_TX+0.1 as the correlating function. However the curves for the

different loss zone thicknesses diverged from one another for higher values of X-
.-

It has been previously mentioned (section 2.2) that the results for the sech" heat loss

profile can be compared with the results of Wichman and Ray [14] for the top-hat profile.

However, the thickness ,,xZ_ of the top-hat profile must be chosen to be 2/B, where the value

of B is determined from the choice of the thickness of the sech: profile. For example, when

(_ZR).,,c^2 is chosen to be 0.06, the constant B=99.7 and consequently
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(zXZR)_op_a_.,=2/99.7-O.02.As shownin [14], bothanalyticalandnumericalmethodswereused

to determinetheextinctionvalueof N a for the top-hat profile. Here, we compare analytical

and numerical results for the top-hat profile with the numerical solutions for the sech: profile.

Figure 19 depicts the extinction N a

(Az._)_,h_ =0.06, (_ZR),o___=O.02

values plotted as a function of Z./. when Yoo=0.7,

and ,4 =0.1. The direction of increasing Y,F has also

been indicated on the plot. The numerical solutions reveal that the sech'- and the top-hat profiles

produce very similar Na.,_.,:,.a_:o,, values. This indicates that the integrated value of the radiative

loss term is the quantity which determines the extinction N, value. The extinction N a

values obtained by analytical method are quite different from the numerical solution. However,

inspection of the curves depicted in Figure 19 shows that the ratio of the analytically ob_ned

values to the numerical solution is very nearly (+ 1.5 %) 3.8 for all the Z,,. values plott_ in

Figure 19, exactly as in [14]. This indicates that a simple modification of the analytical formula

of [14] based on the inclusion of a correction factor should yield close correspondence bet,a'_n

the analytical and numerical results. Thus, we use

where D o is the Damk6hler number defined under Equation (11), b e is the extinction value

of the reduced Damk6hler number (see [14]) and 0=Za +Z__, which we write as 0-2Zx,.,
..

after using Za.=Za+AZJ2 , Za_=Za-tXZJ2. In other words, Z a is the value of the heat loss

zone peak. With C= 1/3.8 this formula correlates the numerically-derived data of Fig. 19 within

line width. This multiplicative factor will depend on the global stoichiometry, of course.
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5. CONCLUSIONS

We investigated the influence of a simple and hypothetical heat loss zone on a pure

diffusion flame in detail. The loss profile was of the form ofa sech" given by equation (12) and

we varied the intensity and the width of the loss zone to study the diffusion flame response. The

loss zone was postulated to lie always on the fuel side of the ideal Burke-Schumann flame. The

location of the loss zone on the fuel side relative to the ideal flame location ZI was also

varied. In all situations, the increase of the radiation number N R results in a movement of

the flame toward the fuel side. We found that for thin loss zones located close to Z/, the

reaction zone may even migrate through the flame to the fuet side of loss zone for significantly

high values of N a. In such a s[tuation the loss zone now lies on the oxidizer side of the flame,

contrary to our initial postulate. This happens because our hypothetical loss zone is static and

cont.mns no mechanism for movement. The reaction rate profile, on the other hand, is fre,e to

move and hence locates itself on the fuel side of the loss zone in cer_n cases.

Extinction plots were generated for different flames for given loss zone thicknesses

(.-6,Z0 and given separation distances (4). The plots indicated that for a given Yoo, an

increase in Y_r results in higher values of extinction radiation number, N z.

Nondimensional heat transfer rates to the oxidizer wall were also investigated.

results indicated that the separation distance A

heat transfer characteristics.

The total heat release in the combustion process,

increasing values of N R

found that the quantity

The

did not have a significant influence on the wall

qro_, was found to decrease with

and the rate of decrease was quite rapid for thicker loss zones. It was

Na(2/B) characterizes q:ro,,,_ very well and the curves for the
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different loss zone thicknesses and separation distances all collapse onto one another except near

extinction. A correlation was produced in the linear region.

constants depend upon the flame stoichiometry.

of

extinguishes at a larger value of

N_(2/B) collapses the qro_

We expect that the correlation

Investigation of the radiative fraction showed that X increases with increasing values

N_ and the rate of increase is steeper for thicker loss zones. The flame, however,

X for loss zones which are relatively thin. The quantity

and radiative fraction values very well except near flame

extinction. A linear correlation formula was produced whose coefficients vary with global flame

stoichiometry. The detailed determination of these coefficients will be the subject of a future

work. The decrease in the flame temperature was nearly linear with radiative loss fraction, as

shown in Fig. 18. The linearity, away from near-extinction, of all of these results is very"

encouraging for the development of a simplified description of soot radiation in flames. Once

a suit.able Na is defined and an estimate is made of the soot layer thickness 2/B in mixture-

fraction space, correlations resembling those of Figs. 13, 15, 17, 18 can be generated for the

important overall heat-transfer quantities. The estimation of the soot-layer thickness will be the

subject of a future work.

Finally, we demonstrated that the extinction formula derived in Ref. [14] could be easily

modified to suit this sech: model by replacing the top-hat loss zone thickness with 21B for large

B. The hop-hat and sech: profiles thus modified produce exactly the same N_.,_,.:,,,._,, vs ZI

curve, see Fig. 19. The correlation with the analytical formula derived in [14] is given by

equation (17) with the new effective loss-zone thick.hess 2lB. We expect that the multiplicative

empirical constant (here 3.8), will depend fairly weakly on the global stoichiometry, blany

cases must be examined in order to determine this dependence.
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NO_.fENCLATURE

/7

a
P

A

b

b'

C

D,Do

Do,D _,

E

£

hi

h

It

H
o

L

Q,.

f

R

s,..7o

Constant in asymptotic formulation defined by Eq. (35.[)

Pla.nck mean absorption coefficient

Pre-exponential factor

Reduced Damk6hler number defined by Eq. (35.iii)

Reduced Damk6hler number with zero heat losses

O(1) constant in asymptotic formulation, see (Eq. (35.ii)

Damk6hler number; Damk6hler number with no heat losses

Diffusion coefficients for oxidizer, fuel

Activation energy

Soot volume fraction

Specific enthalpy of species i

Resc.aled enthalpy loss, h=p

Enthalpy defect, H='c+yo+YF-1

EnthMpy defect with zero heat losses, tfo=O

Combined heat loss; distance between fuel and oxidizer walls

Radiation number, see Sec. 2.4

..

Nondimensional radiant energy flux, _see (Eq. (1) and above Eq. (2)

Heat release per unit mass of fuel

Nondimensional heat release

Nondimensional reaction term,

Universal gas constant

Mass coordinate,

r =yoyFexp [- [3(1 -'Q/[ 1 - ,-r(1 - r)]]

s=f p&,So=fo"pd. 



so Nondimensional mass coordinate, _=S/So

Redefined dependent variable, S=_.-H=l-(yo+yl: )

T, TpT,T R Temperature (flame, ambient, radiation zone)

U

Uo(Z)

w

X

Yr, Yo

Flow velocity

Heaviside step function

Reaction term, w=pAYoYrexp(-E/RT)

Spatial coordinate

Rescaled fuel, oxidizer mass fractions

YPYo Fuel, oxidizer mass fractions

Z Physical coordinate, Z=I-5",

Z,_.,.ZR_,Z,

coincides with mixture fraction

Z-values at fight, left, meddle of radiation-loss zone

GREEK

_Z R

).

P

Enthalpy ratio, ,* =l-TiT/

Zetdovich number, f3=c_E/RT/

Radiation-loss zone thickness, AZR=Za.-Za.

Small dimensionless parameter

.*

Rescaled mixture fraction, see above Eq. (31)

Sum of ZR. and Za_ , O=Z_.+Z__

Thermal conductivity

Nondimensional physical coordinate, (=s

..

Density
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Stefan-Bo[Lzma.nn constant

Nond[mensionM temperaiure, -¢=(T-T_/(T/-T_

Global equNa.lence ratio

Scaled value of S in react.ion zone, see above Eq. (3 t)



REFERENCES

[t] J.D. Felske and C.L. Tien. Combustion Science and Technology, 7:25, 1973.

[2] G.H. Markstein. In Sixteenth Symposium (International) on Combustion, page 1407,

The Combustion Institute, Pittsburgh, 1976.

[3] C.L. Tien and S.C. Lee. Progress in Energy aM Combustion Science, 8:41, 1982.

[4] W.L. Grosshandler and J.P. Vantelon. Combustion Science and Technology, 44: 125,

1985.

[5] S.H. Chan, X.C. Pan, and M.M.M. Abou-Ellail. Combustion and Flame, 102:438,

1995.

[6] J.P. Gore and J.H. Jang, Journal of Heat Transfer, 114:234, 1992.

[7] Y.R. Sivathanu. and J.P. Gore, Combustion and Flame, 97:161, !994.

[8] W.L. Grosshandier and A.T. Moda.k. In Eighteenth Symposium (International) on

Combustion, page 601, The Combustion Institute, Pittsburgh, 1981.

[9] I.S. Wichman. An Introduction to Combustion Modeling Using High-Activation-

Energy Asymptotic (AEA) Methods, CRC Press, 1993.

[i0] F.A. Williams. Combustion Theory, The Benjamin/Cummings Publishing Company,

Inc., 1985.

[11] R.J. Santoro, T.T. Yeh, J.]. Horvath, and H.G. Semerjian. Combustion Science and

Technology, 53:89, 1987.

[12] I.S. Wichman, PhD thesis, Princeton University, 1983.

[13] L.S. Tzeng, A. Atreya_ and I.S. Wichman. Combustion and Flame, 80:94, 1990.

[14] I.S. Wichman and A. Ray, submitted, 1996.



Figure l:

Figure2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Flour.. 9:

Figure 10"

Figure 11"

Figure 12:

Figure 13:

LIST OF CAPTIONS FOR FIGURES

The problem geometry, including the diffusion flame (DF), the radiation (soot)

zone and the porous diffusive walls at x=0 and x=k. The reactant influx is

purely diffusive.

Flame temperatures via simple correlation. Note that the maximum T/ for

Y_.F=0.25, 0.3 occurs near Yoo=0.4: we do not use these curves for this very
reason.

The sech'- heat-loss profile showing the separation A between Z/ and Z.__,

and our (preliminary) definition of AZ R (which we shall subsequently modify).

Influence of increasing N a on the temperature distribution in a diffusion flame.

Here the flame penetrates the loss zone, which is unrealistic unless oscillations

occur. When Na>383, _ crashes everywhere to zero.

Same as Fig. 4 for the reaction rate.

immediately obvious.

Here the migration of the flame is

Profiles of _, Yo, YF and reaction rate for infinite and finite-rate cases, the

latter just prior to extinction. Note that the YF profile is virtually unchanged
from its IRR value until inside the reaction zone.

The flame structure for Fig. 4 at the brink of extinction.

Influence on temperature field of increasing Na on the same DF as Fig. 4

except the loss zone is2.5x thicker, AZR=0.1.

Influence of non-zero initial displacement ,5 between the loss zone and the DF

(at Z/). Here, the flame does not penetrate the loss zone before extinction.

Same as Fig. 9 for the reaction rate. The right-ward movement in mixture

fraction space is obvious.

Extinction plot for AZ_=0.06 and zero initial displacement, 4=0. Along

each curve, ¥,r increases as 7./ decreases. The largest FF*" values have

the highest (NR),,. , values.

Total heat flux (nondimensiona.1) to the oxidizer wall versus N a.

A replot of Fig. 12 with new abscissa NR(2/B ). The correlation of the straight-

line region is (heat flux)= 1.9NR(21B)+5.3.



Figure 14:

Figure 15:

Figure 16:

Figure 17:

Figure 18:

Figure 19:

The total heat flux asa functionof N_, for various loss-zone thicknesses and

zero displacement, A=0. As N a increases, the integrated reaction rate

decreases monotonically.

Replot of Fig. 14 showing the collapse of the data to a single line except very
near extinction.

Radiant flux fraction versus N a.

A replot of Fig. 16 with abscissa NR(2/B) showing collapse of data to a single
CuFve.

The decrease in flame temperature versus radiant flux fraction shows a linear

functional form that is virtually independent of the loss-zone width, AZ_.

Plot of Na.,__ versus Z,. for the sech" loss profile and the previously-examined

top-hat loss profile [14]. The close agreement between the numerical solutions

indicates that the correlation with the analytical formula will be outstanding when

the latter formula is multiplied by (3.8)t=0.261.



TABLE 1: FLAM_ETE3{PERATURE VERSUS Yoo DATA

Yoo 0.211 0.233 0.247 0.276 0.329 0.432 0.533 0.727 1.0

T/ 2137 2230 2295 2385 2515 2684 2789 2919 3026

TABLE 2: PAR..&MTER VALUES.

Specific heat

Thermal diffusivity

c,

c_9

1.35

1.24xI0 _

Fuel-oxidant mass ratio _, 4.0

A 5x107 lhPre-exponential factor

Activation _ _,en,..r_y

Heat release

E 121,841.7

11959.43Q#-

K_J/kTnol

KY/K_K
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